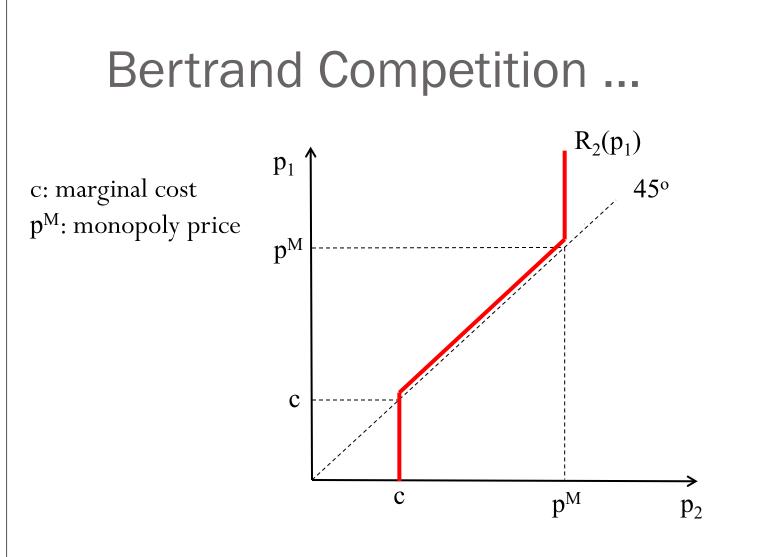
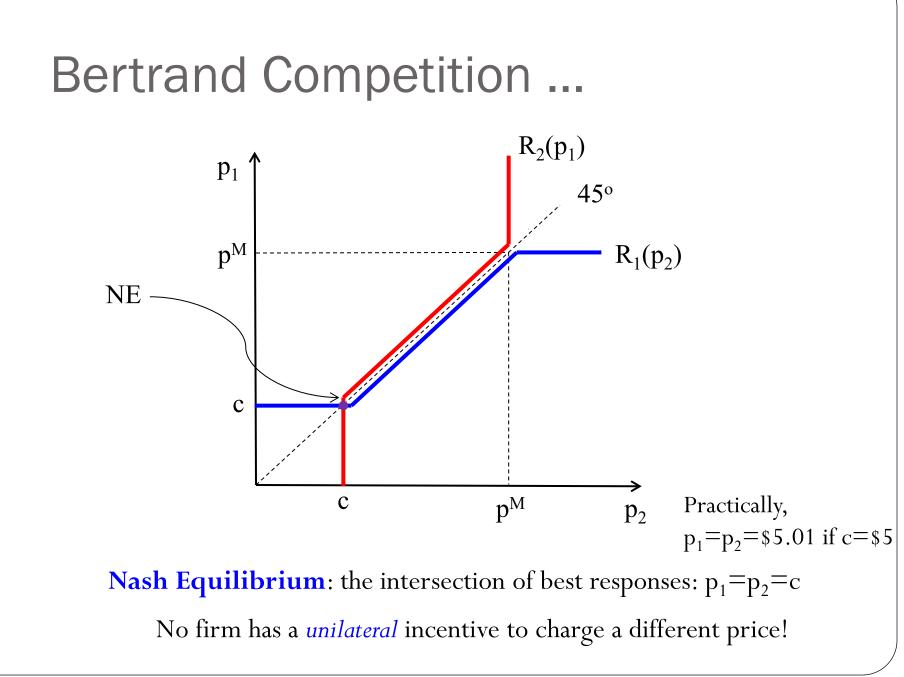

PRICE COMPETITION

Introduction


- Price is an important competition instrument
- This chapter:
 - Considers *strategic pricing*: pricing decisions by a few firms (e.g., airline companies, Pepsi and Coke, gas stations) who supply similar (even identical) products
 - Uses *game theory*: simultaneous-move games and Nash equilibrium

Benchmark: Bertrand Competition


- Players: two firms (1 and 2) produce *identical* products at the same marginal cost c (e.g., c=\$5)
- Strategies and rules:
 - Firms set prices p_1 and p_2 simultaneously
 - Consumers know both firms' prices perfectly
 - If one firm prices lower, it gets the whole market
 - If prices are the same, firms split the market
- Total demand is Q = D(p) (e.g., 10-p), where p=min {p₁,p₂} is the lower price between p₁ and p₂
- Referred to as "*Bertrand*" game after its inventor Joseph Bertrand (1822-1900)

Firm 1's *best-response* $R_1(p_2)$: optimal p_1 for each possible p_2

Firm 2's *best-response* $R_2(p_1)$: optimal p_2 for each possible p_1

The "Bertrand Trap"

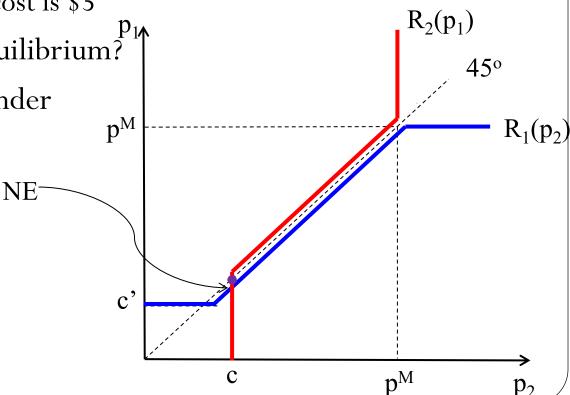
- Even with two firms, price is driven down to the *competitive price=marginal cost*
 - Firms would be better off if they could charge some common price above the marginal cost
- Examples (?):
 - airlines competing in the same route
 - online bookstores selling the same book ...
- Comments:
 - Which aspects of the model are not so realistic?
 - But still a useful benchmark to show the danger of the pricecutting game

Online Flight Prices

Airlines 🕿	<u>Clear</u> from \$1,233
American Airlines	\$1,233
Virgin Atlantic	\$1,233
Continental	\$1,233
lberia	\$1,233
British Airways	\$1,233
🔲 bmi	\$1,234
Lufthansa	\$1,234
Delta	\$1,314
KLM	\$1,315

NYC-London: Expedia.com

iPhone7


Refine by Clear all	Price + Shipping	Condition (Learn more)	Delivery	Seller Information	Buying Options
Shipping yrime Free shipping Condition Certified Refurbished	\$412.32 vprime & FREE Shipping	Certified Refurbished	 Arrives between March 15-21. Want it delivered Tuesday, March 13? Order it in the next 21 hours and 20 minutes, and choose Two-Day Shipping at checkout. See details Shipping rates and return policy. 	Alan Flax, LLC 27% positive over the past 12 months. (102 total ratings)	Add to cart
	\$412.34 vprime & FREE Shipping	Certified Refurbished	 Arrives between March 15-21. Want it delivered Tuesday, March 13? Order it in the next 21 hours and 20 minutes, and choose Two-Day Shipping at checkout. See details Shipping rates and return policy. 	PRIVI 全会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	Y Add to cart
	\$412.48 vprime & FREE Shipping	Certified Refurbished	 Arrives between March 14-16. Want it delivered Tuesday, March 13? Order it in the next 21 hours and 20 minutes, and choose Two-Day Shipping at checkout. See details Shipping rates and return policy. 	WeDeliverWireless	Add to cart
	\$412.49 vprime & FREE Shipping Details	Certified Refurbished	FULFILLMENT BY AMAZON * • Shipping rates and return policy.	DealFisher 会会会会 <u>98% positive</u> over the past 12 months. (68,910 total ratings)	Add to cart
	\$412.86 <prime & FREE Shipping Details</prime 	Certified Refurbished	FULFILLMENT BY AMAZON F Back-ordered Due in stork March 8 order now to	Prime Mobility	Add to cart

Ways Out of the Trap

- Eliminate competition:
 - Buy your competitors (may not permitted by competition authority)
 - Price agreement (illegal practice)
- Make competitors less aggressive:
 - Be the cost leader
 - Limiting capacity: with a limited capacity, a firm has less incentive to undercut its rivals
 - Clever pricing strategies such as price matching
 - Long-term interaction and implicit cooperation
- Make consumers less price sensitive:
 - Product differentiation
 - Informational friction
 - Complicated pricing schemes and consumer confusion

Benefits of Having Lower Cost

- Consider the Bertrand game, but now assume different marginal costs across firms
 - Firm 1's marginal cost is \$4
 - Firm 2's marginal cost is \$5
- What's the Nash Equilibrium?
- Firm 1 prices just under Firm 2's costs.

Limited Capacity

Consider a simplified version of the Bertrand game:

- Only two potential buyers: each of them wants to buy one unit of the product, and they are willing to pay up to \$10
- Two firms: each can supply only one unit of the product
- Buyers patronize the cheaper firm, unless its product has sold out
- What's the Nash Equilibrium?
 - c.f., what if firms had capacity of 2?

BUSINESS DAY

Airlines' Unwanted Fleet Grows in the Desert

By EDWARD WONG JUNE 7, 2003

Correction Appended

No better barometer of the fortunes of the airline industry exists than 1,200 acres of parched brown earth here, baking at 102 degrees.

Row upon row of jetliners sit idle in three lots, their engines sealed with silver or black Mylar, their rudders rising from the flat desert like shark fins protruding from an ocean's glassy surface.

Rattlesnakes slither in the shadows of nose cones and tortoises inch their way past landing gear. A yellow school bus carrying a dozen mechanics barrels between planes, kicking up dust.

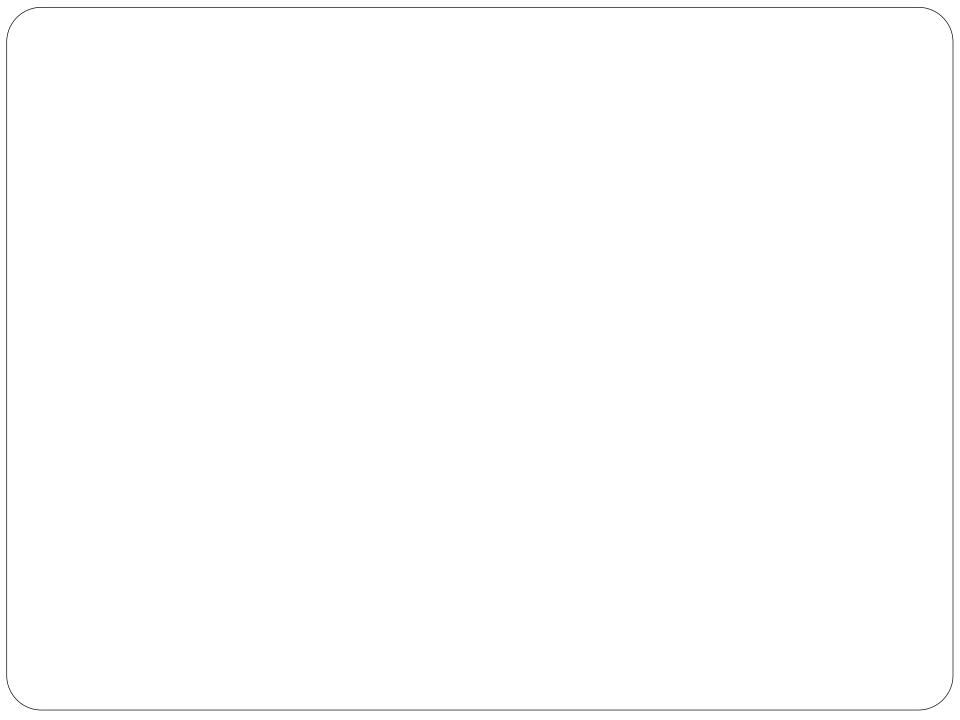
About 230 jets have been consigned to this purgatory, a storage and maintenance yard operated by Avtel Services. That number is four times what it was before the terror attacks of Sept. 11, 2001. When the airline business is poor, the money here can be good, and the general manager, Justin Loucks, says his business will only get better.

Price Matching

- **Price matching**: a firm offers a price and a *promise* to match any lower price offered by a competitor
- Revisit the Bertrand game. But suppose now that each firm is using the price-matching strategy. What's the Nash Equilibrium?

Price Match Guarantee

✔ We won't be undersold

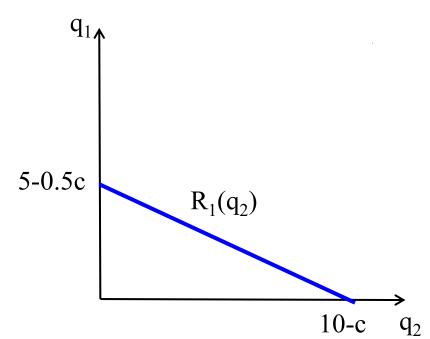


Shop with confidence knowing your're getting the best deal!

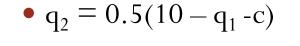
*Please read complete policy for details.

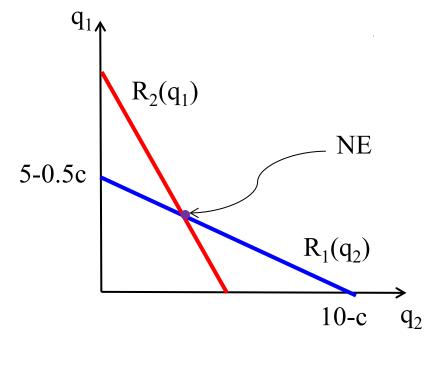
Quantity Competition

- Even when firms sell identical products, if production decisions need to be made prior to pricing decisions, p>MC.
- 2 Firms choose q₁ and q₂.
- Total quantity is $Q = q_1 + q_2$.
- Total demand is Q = D(p)=10-p
- Marginal cost is c.
- Find the Nash Equilibrium. Find the associated prices.


- Fix q₂. Consider best response for Firm 1.
- Once q_2 is fixed, it is similar to the monopoly problem.
- Total quantity is $q_1 + q_{2}$.
- Price is $p=10-Q=10 (q_1+q_2)$.
 - Demand is given by Q = D(p)=10-p
- Think of monopoly pricing where demand is given by
 - $p=(10 q_2) q_1$.
- Revenue is = $(10 q_2 q_1) q_1$.
- MR is (10 q₂) 2q₁
- MC is c.

• MR is (10 - q₂) - 2q₁


• MC is c.


• Set MR = MC:
$$(10 - q_2) - 2q_1 = c$$

•
$$q_1 = 0.5(10 - q_2 - c)$$

- Fix q_1 and now consider best response for Firm 1.
- Similar exercise yields

• Simply solve

•
$$q_2 = 0.5(10 - q_1 - c)$$

•
$$q_1 = 0.5(10 - q_2 - c)$$

•
$$q_1 = q_2 = (1/3)(10-c)$$

•
$$P = 10 - (q_1 + q_2)$$

= 10 - (2/3)(10 - c)

$$= 10/3 + (2/3)c$$

> c (for c < 10)

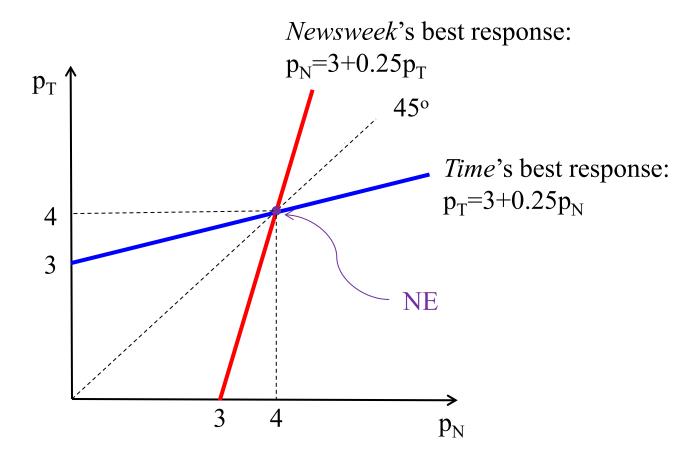
Product Differentiation

- *Horizontal differentiation*: differentiation in characteristics such as colors, styles, and locations
 - Different consumers often have different tastes for these characteristics
 - So for equal prices, different consumers prefer different products
- *Vertical differentiation*: differentiation in quality (e.g., durability, shipping speed ...)
 - All else equal, all consumers prefer a high-quality product over a lowquality one

• Comments:

- In most cases, both kinds of differentiation exist
- Sometimes product differentiation could be purely *spurious*, e.g., due to advertising and branding(e.g., generic drugs vs brand names)

Example: Differentiated Products


- Two firms (e.g., *Time vs Newsweek*) supply differentiated products
 - Marginal cost: \$1; set prices simultaneously
- Demand:

$$\begin{cases} q_{\rm T} = 5 - p_{\rm T} + 0.5 p_{\rm N} \\ q_{\rm N} = 5 - p_{\rm N} + 0.5 p_{\rm T} \end{cases}$$

- Quantity demanded decreases with a firm's own price but *increases* with its rival's price
- Demand is no longer as elastic as with homogenous products: even if *Time* charges a higher price than *Newsweek*, it still has some demand
- Is $p_T = p_N = 1$ a NE?
 - If Newsweek sets a price at \$1, will Time cut price to \$1 too?

Example: Differentiated Products

Example: Differentiated Products ...

NE: each firm charges $p_T = p_N = 4 > marginal cost$

Complicated Pricing and Confusion

- Pricing schemes for some products and services have complicated structure (e.g., mortgages, insurance, bank accounts, cell phone service)
 - Innately complicated, or firms' intentional practice
- Ordinary consumers may get confused in comparison and even opt for expensive deals

Lender	Initial	Subsequent	Overall cost for	Max%	Lender
Lender	rate	rate	comparison	LTV	fee
First Direct	3.34%	3.69%	3.9% APR	60%	£1498
Leek United	3.39%	5.19%	5.2% APR	75%	£1495
Britannia	4.34%	4.24%	4.5% APR	60%	£599
Chelsea	4.80%	5.79%	5.5% APR	65%	£995
Co-operative Bank	5.29%	4.24%	5.2% APR	60%	£995

www.confused.com

Discussion: E-Commerce

- E-commerce makes the Bertrand trap particularly dangerous.
- How can e-commerce firms avoid the trap?
 - What advantages are there to firms selling online relative to those selling offline?

Consumer Awareness of Prices

- More price transparency > More likely consumers are aware of different prices.
- Brynjolfsson and Smith (1999) studies how online-offline prices

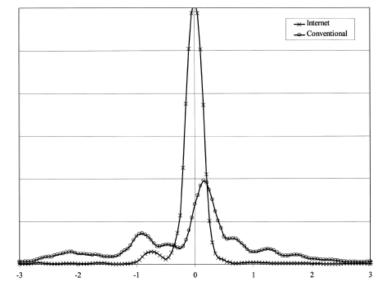

A Comparison of internet

Table 2	t tests on Mean Store Prices				
Product	Conventional	Internet Price	Alternative	t test	
Market	Price Mean	Mean	Hypothesis	Significance	
Books	13.90	11.74	$P_{\rm INET} < P_{\rm PHYS}$	0.001	
CDs	16.07	13.49	$P_{\rm INET} < P_{\rm PHYS}$		

Table 3	Proportion of the Time the Minimum Internet Price (of Eight Sample Stores) Is Less Than or Equal to the Minimum Conventional Price (of Eight Sample Stores)				
	Min. Internet Price <	Min. Internet Price =			
Product	Min. Conventional	Min. Conventional	Alternative	P-Value	
Market	Price	Price	Hypothesis	Significance*	
Books	92.0%	4.5%	$P_{\rm INET} < P_{\rm PHYS}$	0.05	
CDs	84.6%	5.1%	$P_{\rm NET} < P_{\rm PHYS}$	0.05	

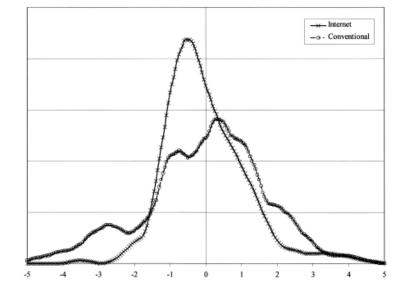

Consumer Awareness of Prices

Figure A7 Kernel Density for De-Meaned Full Prices for Books, Observations Weighted by Screen/Market Share (Epanechnikov Kernel)

De-meaned prices, books

Figure A8 Kernel Density for De-Meaned Full Prices for CDs, Observations Weighted by Screen/Market Share (Epanechnikov Kernel)

De-meaned prices, CDs

Drug prices from NY pharmacies

- Study by Sorensen (2000) analyses price dispersion of various drugs
- Finds smaller price dispersion for drugs for chronic conditions
- Larger price dispersion for one-off drugs

	DISPERSION MEASURE			
	Range (1)	Standard Deviation (2)	Residual Range (3)	Residual Standard Deviation (4)
Purchase frequency	336	173	266	102
	(.123)	(.076)	(.061)	(.016)
Wholesale cost	.280	.180	.215	.069
	(.033)	(.020)	(.043)	(.014)
Branded with generic	803	-1.480	-1.842	362
competition	(1.037)	(.641)	(.861)	(.248)
Branded without ge-	-1.505	-2.010	-1.967	772
neric competition	(2.108)	(1.303)	(1.060)	(.339)
Newburgh dummy	-2.686	-3.172	-1.493	916
0	(.633)	(.314)	(.791)	(.271)
Constant	20.070	7.321	14.570	5.283
	(4.343)	(2.563)	(1.062)	(.448)
R ^e	.371	.447	.258	.253
ê	.338	.585	.149	.648

TABLE 2 PRICE DISPERSION AND PURCHASE FREQUENCY

Drug prices from NY pharmacies

• Sorensen (2000) also finds lower margins (price close to cost) for chronic drugs

	1	E	
	Average Margin (1)	Average Price (2)	Average Relative Margin (3)
Purchase frequency	262	137	.001
	(.102)	(.105)	(.003)
Wholesale cost		.994	
		(.032)	
Wholesale cost × generic		208	
dummy		(.059)	
Branded with generic	2.101	668	235
competition	(.720)	(1.056)	(.020)
Branded without generic	3.415	123	255
competition	(1.660)	(1.891)	(.046)
Newburgh dummy	1.681	1.648	.047
<u> </u>	(.174)	(.140)	(.005)
Constant	12.69	11.86	.463
	(2.435)	(2.581)	(.068)
R ^e	.229	.895	.510
Â	.915	.936	.898

TABLE 3 Average Margins and Purchase Frequency

Summary

- Price cutting is a dangerous game
 - Price competition can be severe, even with a small number of firms
- Ways to weaken price competition
 - Make your rivals less aggressive
 - Make consumers less price sensitive
- When production decision predates price, we also have p>c even when selling homogenous products..